Important 3 mark question for TN class 12 Physics.

Chapter 1: Electrostatics

- 1. Write down the important aspects of Coulomb's law.
- 2. What are the properties of electric field lines?
- 3. Derive an expression for the electric field due to the system of point charges.
- 4. Write the properties of an Electric dipole
- 5. Derive an expression for the electric potential due to a point charge.
- 6. Establish the relation between the electric field and the electric potential.
- 7. Derive an expression for the Torque experienced by an electric dipole in the uniform electric field.
- 8. What are the properties of an equipotential surface?
- 9. Obtain Gauss's law from Coulomb's law.
- 10. Differentiate between Coulomb's force and gravitational force.
- 11. Derive an expression for the energy stored in the capacitor.
- 12. Write the uses of capacitors.
- 13. Explain Capacitor connected in series and parallel.
- 14. Explain the distribution of charges in a conductor.
- 15. Write a short note on the Van de Graff generator.

Chapter 2: Current Electricity

- 1. Derive expressions for the I) microscopic model of current, II) Current density(J)
- 2. Derive the expression for Ohm's law.
- 3. Explain the determination of internal resistance.
- 4. Derive an expression for cells in series and cells in parallel.
- 5. Explain Kirchhoff's first and second rules.
- 6. Explain the Wheatstone bridge.
- 7. Explain the meter bridge.
- 8. What is the Seebeck effect, and what are its applications?
- 9. Define temperature coefficient of resistance.

Chapter 3: Magnetism and magnetic effects of electric current.

- 1. Write the properties of a magnet.
- 2. State and explain Biot-Savart law.
- 3. How to convert a galvanometer to an ammeter.
- 4. How to convert a galvanometer to a voltmeter.

- 5. State Fleming's left-hand rule.
- 6. Compare the properties of diamagnetic, paramagnetic and ferromagnetic materials.
- 7. Write down the features of the Lorentz force.
- 8. Write a note on moving coil galvanometer.

Chapter 4: Electromagnetic Induction and Alternating Current

- 1. How will you induce an emf by changing the area enclosed by the coil?
- 2. Explain motional emf from Lorentz force.
- 3. What is an eddy current, and what are the drawbacks of eddy currents?
- 4. Derive an expression for average power of AC over a cycle?
- 5. Mention various energy losses in a transformer.
- 6. Explain the relationship between voltage and current in an AC Circuit containing a pure resistor.
- 7. Write the advantages and disadvantages of AC over DC.
- 8. Mention the analogies between electrical and mechanical quantities.

Chapter 5: Electromagnetic waves

- 1. What are the properties of electromagnetic waves?
- 2. Explain Maxwell's modification of Ampere's circuital law.
- 3. Explain the types of emission spectrum: i) Continuous emission spectrum ii)Line emission spectrum, iii) Band emission spectrum.
- 4. Explain the absorption spectra and their types.
- 5. What are the Fraunhofer lines?

Chapter 6: Ray Optics

- 1. Explain the angle of deviation due to reflection.
- 2. What are the characteristics of the image formed by a plane mirror?
- 3. Explain the relationship between f and r.
- 4. Derive the mirror equation.
- 5. Explain the lateral magnification in spherical mirrors.
- 6. Explain the angle of deviation due to refraction
- 7. Explain critical angle and total internal reflection.
- 8. What are the effects due to total internal reflection?
- 9. What is the refractive index of the material of the prism?
- 10. What is the optical path? Derive an equation for the optical path.

Chapter 7: Wave optics

- 1. Explain Huygen's Principle.
- 2. Explain the Phase difference and the path difference.
- 3. Write the difference between Fresnel diffraction and Fraunhofer diffraction.

- 4. Explain Fresnel's distance.
- 5. What are the characteristics of polarised and unpolarised light?
- 6. Mention the uses of Polaroids.
- 7. Explain Brewster's law.
- 8. What is the Nicol prism?
- 9. Explain astigmatism.

Chapter 8: Dual nature of Radiation and matter.

- 1. Explain the types of electron emission.
- 2. Mention the laws of photoelectric current.
- 3. What are the characteristics of a photon?
- 4. Explain Photo cells and their types.
- 5. What are the applications of photocells?
- 6. Derive an equation for the De Broglie wavelength of electrons.
- 7. What are the applications of X-rays?
- 8. Why electron is an electron preferred over X-rays in a microscope?


Chapter 9: Atomic and nuclear physics.

- 1. What are the properties of Cathode rays?
- 2. Explain J.J. Thomson's Atom model.
- 3. What are the drawbacks of the Rutherford atom model?
- 4. List the limitations of the Bohr atom model.
- 5. What are the postulates of the Bohr atom model?
- 6. What are isotopes, isobars and isotones?
- 7. Explain alpha decay.
- 8. Write a note on Carbon dating.
- 9. What is meant by the half-life period of a radioactive element? Derive an expression for the half-life period.
- 10. What are the properties of a neutrino?
- 11. Explain the beta decay process with an example.
- 12. What are the important interferences from the average binding energy curve?

Chapter 10: Electronics and communication

- 1. Write a short note on the P-N Junction Diode.
- 2. Explain the Avalanche breakdown.
- 3. Write the applications of the Zener diode.
- 4. What are the applications of light-emitting diodes?
- 5. State De Morgan's first and Second theorems.
- 6. What is Amplitude Modulation(AM)? Mention its advantages and Limitations.
- 7. What is Frequency Modulation(FM)? Mention its advantages and limitations.
- 8. Draw the block diagram of the transmission and reception of voice signals.
- 9. Draw the Circuit symbol, logic operation, and truth table of ALL gate.

- 10. Write the properties of electromagnetic waves.
- 11. What are groundwave propagation and skywave propagation?
- 12. What is the Internet? Write its applications.

